

Руководство администратора веб-интерфейса системы хранения данных «SpaceSan» ver. 3.0.1

1. Описание функциональности

1.1 Подключение и авторизация

Условия, при которых возможно выполнение: у СХД есть назначенный в системе IP-адрес и наличие любого браузера на устройстве, с которого будет осуществляться вход.

Вход в веб-интерфейс осуществляется через ввод ip-адреса СХД в адресную строку браузера, после чего открывается страница авторизации (см. рисунок 1).

Spa Пространо	е	Sa	n																					
• •																								
• •																								
• •																								
• •																								
											Ав	тор	оиз	аци	я									
• •									Логин															
• •																								
· ·									passw	ord														
• •																								
• •																								
· ·																								
· ·																								

Рисунок 1 – Авторизация

Стандартные данные для подключения к веб-интерфейсу admin/demospace. При вводе корректных данных будет открыт веб-интерфейс управления СХД. При вводе некорректных учетных данных будет отображено соответствующее уведомление об ошибке авторизации (см рисунок 2).

SpaceSan			Ошибка авторизации
	Авторизация		
	Логин		
	admin		
	password		
	adm		
a a a a a a a a a a a a a a a a a	· · · · · · · · · · · · ·	a a a a a a a a a a a	a a a a a a a

Рисунок 2 – Ввод некорректных данных в окне авторизации

1.2 Навигация по интерфейсу системы

Условия, при которых возможно выполнение: авторизация в Системе.

После авторизации появляется главный экран модуля управления СХД – вкладка hardware (см. рисунок 3).

Рисунок 3 – Главный экран

В самом верху экрана отображается статус системы, переключение языка интерфейса и возможность выключения/перезагрузки системы (рисунок 3, область 1).

Под верхним блоком располагается краткая информация о контроллерах в системе (рисунок 3, область 2).

При нажатии на контроллер появится блок с подробной информацией о контроллере (см. рисунок 4).

$\mathbf{\Sigma}$		
Модель	Тип адаптера	Температура
НВА 9500-8і	SAS3808(A0)	41 С
Serial Number	SAS Address	PCI Address
SKC0268313	500062b20bcdbac0	00:18:00:00
FW Version	BIOS Version	NVDATA Version
32.00.00.00	09.63.00.00_32.00.00.00	32.01.00.11
PSOC FW Version	PSOC Part Number	Driver Name
0x0064	06021	mpt3sas
Driver Version	Bus Number	Device Number
53.00.00.00	24	0
Function Number	Domain ID	Vendor Id
0	0	4096
Device Id	SubVendor Id	SubDevice Id
230	4096	16480
Board Assembly	Board Tracer Number	Security Protocol
03-50077-03002	SKC0268313	None
Package Stamp Mismatch	Physical Drives	Requested Boot Drive
No	24	Not Set

Рисунок 4 – подробная информацией о контроллере

Ниже информации о контроллерах располагается блок с информацией о дисках в СХД (рисунок 3, блок 3).

На вкладке также находится информация о системных дисках (рисунок 3, блок 4).

В данной конфигурации имеется два системных диска в зеркальном рейде.

Над информацией о системных дисках располагается кнопка обновления информации состояния дисков (рисунок 3, область 7).

Под информацией о системных дисках располагается информация о дисках на передней панели (рисунок 3, область 5). Есть соответствующий индикатор зеленого цвета, который указывает на принадлежность диска к пулу.

Можно посмотреть подробную информацию о каждом диске, нажав на любой из них (см. рисунок 5).

Рисунок 5 – Подробная информация диска

В данном окне есть возможность запустить индикацию диска, которая позволяет визуально идентифицировать диск на панели и очистить метаданные.

Очистка метаданных позволяет удалить содержащиеся метаданные ZFS на диске. Данная функция используется в случае, если диск ранее использовался в пуле ZFS.

В случае если диск вышел из строя загорается индикатор неисправности диска, и после замены диска на новый требуется очистить статус индикации в слоте.

Ниже информации о дисках на передней панели указана информация о дисках NVMe (рисунок 3, область 6).

В левом углу страницы располагается блок для навигации по вкладкам администрирования (рисунок 3, область 8).

В левом нижнем углу находится кнопка выхода из сессии (рисунок 3, область 9).

1.3 Создание и работа с пулом

ZFS – это файловая система, кардинально меняющая принципы администрирования файловых систем с уникальными на сегодняшний день функциями и преимуществами. Система ZFS была разработана как надежный, масштабируемый и простой в администрировании инструмент.

Для управления физическим хранением в ZFS применяется принцип пулов устройств хранения данных. ZFS полностью исключает процесс управления томами. Вместо принудительного создания виртуализированных томов ZFS объединяет устройства в пул устройств хранения данных.

Пул устройств хранения данных описывает физические характеристики хранения (размещение устройств, избыточность данных и т. д.) и выступает в качестве хранилища данных для создания файловых систем. Файловые системы больше не ограничиваются отдельными устройствами, что позволяет им совместно использовать пространство в пуле.

1.3.1 Создание пула

Перейдя на вкладку ZFS, появится возможность создать пул. При нажатии на кнопку "Создание пула" (рисунок 6) откроется соответствующее окно.

Space Prociporeteo Prociporeteo	Cranyc: ♥ ⊕ _{TU} (U) zfs : ZFS ♀ ♀ ♀ Имя Пусто	Размер	Свободно	Состояние	С Управление
Hardware					
ZFS					
Fibre Channel					
ISCSI					
NFS					
Настройки					
Настройка сети					

Рисунок 6 – вкладка ZFS

Осуществляется переход на вкладку создания пула (рисунок 7).

	Статус: 🥪	⊕ _{ru} (CC				I
$\int son$	zfs / create-pool						
Space	Создание п	ула					(?)
пространство технологий	Название пул	5					
		Создать					
Hardware 2	Избыточность				\downarrow	Расширенные опции	\downarrow
ZES	Выберите диск				1	4	Mara and
	Слот	Тип	Размер			кол-во дисков	удалить
Fibre Channel	14:	SSD:	1.75TB) Î			
ISCSI	15:	SSD:	1.75TB	Ĵ			
NFS	16:	SSD:	1.75TB)			
Настройки	17:	SSD:	1.75TB)			
Настройка сети	18:	SSD:	1.75TB) 3			
	19:	SSD:	1.75TB)			
	20:	SSD:	1.75TB)			
	21:	SSD:	1.75TB)			
	22:	SSD:	1.75TB)			
Выйти	23:	SSD:	1.75TB] 🗸			

Рисунок 7 – Создание пула

Для создания нужно ввести название пула (рисунок 7, область 1). Далее необходимо выбрать уровень избыточности рейда (рисунок 7, область 2). Появится окно, в котором выбирается избыточность рейда (рисунок 8).

Рисунок 8 – Избыточность

Далее при нажатии на соответствующую иконку (рисунок 9, область 1)

появится возможность добавлять диски в пул.

Избыт	очность						Расширенные опции 🗸 🗸				
Выбері Слот	те диск Тип	Размер					Кол-во дисков	Удалить			
14:	SSD:	1.75TB	•~	Θ	1	raidz2	0	T			
15:	SSD:	1.75TB									
16:	SSD:	1.75TB									
17:	SSD:	1.75TB									
18:	SSD:	1.75TB									

Рисунок 9 – Формирование пула

Индикация пула изменится на зеленый и появится возможность добавлять диски в формируемый пул (рисунок 10).

Рисунок 10 – Открытие пула

Далее необходимо добавить нужное количество дисков в пул нажатием ЛКМ (рисунок 11).

			Кол-во дисков	Удалить
^	ତ	raidz2	8	•
	\vdash	1: SSD: 1.75TB		
	\vdash	2: SSD: 1.75TB		
	\vdash	3: SSD: 1.75TB		
	\vdash	4: SSD: 1.75TB		
	\vdash	5: SSD: 1.75TB		
	\vdash	6: SSD: 1.75TB		
	\vdash	7: SSD: 1.75TB		
		8: SSD: 1.75TB		

Рисунок 11 – Выбранные диски

Когда иконка неактивна (рисунок 9, область 1) есть возможность перетаскивать диски в нужный пул.

Есть возможность добавить дополнительные опции к пулу (рисунок 7, область 4). Расширенные опции (VDEV) – позволяют добиться повышения эффективности пользования пулом. При нажатии появится соответствующее окно (рисунок 12).

Рисунок 12 – Расширенные опции

При выборе нужных опций появится дополнительный раздел в окне создания пула. Нужно выбрать необходимое количество дисков (рисунок 13). Можно выбирать все требуемые опции.

			Кол-во дисков	Удалить
•~	Θ	raidz2	8	Ť
•	Ð	spare	2	Ť
	\vdash	9: SSD: 1.75TB		
		10: SSD: 1.75TB		

Рисунок 13 – Дополнительный раздел

Последним шагом будет непосредственное создание пула. Для этого необходимо нажать на соответствующую кнопку (рисунок 7, область 5).

После успешного завершения предыдущих этапов появится пул на главном экране вкладки ZFS (рисунок 14).

zfs :				
ZFS 📿	Размер	Свободно	Состояние	Управление
pool0	13.97TB	13.97TB	ONLINE	⊒ ⑦ □

Рисунок 14 – Пул ZFS

1.3.2 Настройки пула

Для работы с пулом нужно перейти в его настройки, нажав на соответствующую кнопку (рисунок 15, область 1).

zfs :				
ZFS 📿 :,⊑ ≒ :,⊑ имя	Размер	Свободно	Состояние	Управление
pool0	15.84TB	15.84TB	ONLINE	⇒ ⊙ ⊡ ⊵ : 1

Рисунок 15 – Настройки пула

В данном разделе есть возможность просматривать или изменять параметры пула (рисунок 16).

Рисунок 16 – Параметры пула

1.3.3 Расширение пула

На вкладке расширения пула можно увеличить количество дисков в пуле либо добавить VDEV к пулу. Переместить нужные диски в логическую группу (рисунок 17) или нажать на соответствующую кнопку (рисунок 9, область 1) простым нажатием ЛКМ.

zfs /	dsadsadas / settings										
Ехра	nd										
¢3			Sa	ive					Cancel		
Ð											
ł	Redundancy					\checkmark	Advanced Options				
	Select disk						Numb	er of disks		Delete	
	Slot: 10 Family: MZILT3T8HBLS/007 Size: 3.49TB	Â	^	e	raidz1-1		3				
Û	SIZE. 3.491D			\vdash	6: SSD: 3.49TB						
	Slot: 11 Family: MZILT3T8HBLS/007			\vdash	7: SSD: 3.49TB	Slot: 9 Family: MZILT3	F8HBLS/007				
	Size: 3.49TB			L	8: SSD: 3.49TB	Size: 3.49TB		,			
	Slot: 12 Family: MZILT3T8HBLS/007 Size: 3.49TB		~	Θ	striped		1				
	Slot: 13 Family: MZILT3T8HBLS/007 Size: 3.49TB										
	Slot: 14 Family: MZILT3T8HBLS/007 Slze: 3.49TB										
	Slot: 15 Family: MZILT3T8HBLS/007 Size: 3 49TB	~									

Рисунок 17 – Расширение пула

1.3.4 Замена диска в пуле

Есть возможность заменить диск в пуле на свободный (рисунок 18).

zfs / pool0 / settings										
Заме	на дисков									
63	Заменить диски				Отменить					
Ð	Слот: 12			Кол-во дисков						
2	Семейство: MZILT1T9HBJR/007 Размер: 1.75TB	^	raidz2-0	11						
		F	1: SSD: 1.75TB							
		-	2: SSD: 1.75TB							
Û		-	3: SSD: 1.75TB							
		F	4: SSD: 1.75TB							
			5: SSD: 1.75TB							
			6: SSD: 1.75TB							
		L	7: SSD: 1.75TB							
			8: SSD: 1.75TB							
			9: SSD: 1.75TB							
		L	10: SSD: 1.75TB							
			11: SSD: 1.75TB							

Рисунок 18 – Замена дисков

Для замены необходимо любой доступный диск переместить в область справа на диск, который требуется заменить (рисунок 19) и подтвердить замену, нажав на кнопку "замены диска".

zfs / pool0 / settings					
Замена дисков					
Заменить диски]		Отменить	
E			Кол-во дисков		
	^	raidz2-0	11		4
	\vdash	12: SSD: 1.75TB		与 1: SSD: 1.75TB	
	\vdash	2: SSD: 1.75TB			
	\vdash	3: SSD: 1.75TB			
	F	4: SSD: 1.75TB			
		5: SSD: 1.75TB			
		6: SSD: 1.75TB			
		7: SSD: 1.75TB			
		8: SSD: 1.75TB			
		9: SSD: 1.75TB			
		10: SSD: 1.75TB			
		11: SSD: 1.75TB			

Рисунок 19 – Замена диска в пуле

1.3.5 Очистка статуса пула

В случае, если на каком-либо из дисков появились ошибки по чтению/записи есть возможность очистить статус пула (рисунок 20). Следует посмотреть статус диска на исправность. Если диск продолжит работать с ошибками, то рекомендуется его заменить.

Рисунок 20 – Очистка статуса пула

1.3.6 Проверка целостности пула

Можно сделать проверку целостности пула (scrub). Данная операция проходит по всем данным в пуле один раз и проверяет, что все блоки могут быть прочитаны. Очистка выполняется так быстро, как позволяют устройства, хотя приоритет любого ввода-вывода остается ниже, чем у обычных операций. Данная операция может негативно повлиять на производительность, хотя данные пула должны оставаться пригодными для использования пока происходит очистка (рисунок 21).

zfs / entity_test / settings						
Проверка целостности						
Проверка целостности Е Е						

Рисунок 21 – Проверка целостности

1.3.7 Логи пула

Есть возможность просмотреть логи пула (рисунок 22).

zts /	entity_test / settings
Логи	И
කි	
	2025-04-03.16:52:51 Zts set snarents=off entity_test/1cdb [user 0 (root) on SPSAN-705-25-018:linux]
<u>ج</u>	2025-04-03.16:39:24 zfs set sharenfs=on entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018.linux]
Ð	2025-04-03.16:37:51 zfs set sharenfs=on entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018:linux]
<u>ہ</u>	2025-04-01.14:05:12 zfs set aclinherit=passthrough entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018:llnux]
0	2025-04-01.13:25:57 zfs snapshot entity_test/1cdb@test1x [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.13:25:47 zfs destroy entity_test/1cdb@test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.13:07:24 zfs snapshot entity_test/1cdb@test1 [user 0 (root) on SPSAN-70S-25-018:linux]
Ô	2025-04-01.13:07:14 zfs set snapdir=visible entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.13:06:54 zfs set sharesmb=on entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.13:06:17 zfs set atime=off entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.13:06:09 zfs set acltype=nfsv4 entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.12:28:20 zfs create entity_test/1cdb [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.12:11:32 zfs set recordsize=128K entity_test/test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.12:11:00 zfs set primarycache=metadata entity_test/test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-04-01.10:37:24 zfs set recordsize=512 entity_test/test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-03-31.18:42:18 zfs set acltype=posix entity_test/test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-03-31.18:42:10 zfs set aclinherit=passthrough entity_test/test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-03-31.18:42:04 zfs set aclmode=passthrough entity_test/test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-03-31.18:34:10 zfs set sharesmb=on entity_test/test1 [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-03-31.16:41:27 zpool replace entity_test /dev/mapper/mpatha /dev/mapper/mpaths [user 0 (root) on SPSAN-70S-25-018:linux]
	2025-03-31.14:25:59 zfs load-key entity_test/testvc02 [user 0 (root) on SPSAN-70S-25-018:linux]

Рисунок 22 – Логи пула

1.3.8 Удаление пула

Возможность удалить пул (рисунок 23).

zfs /	entity_test / settings				
Удал	ІИТЬ				
दि	Удал	ИТЬ			
Ð	Введите код для под	тверждения удаления	я		
ł	NOHt	NOHt			
	Подтвердить	Отменить			
0					
Û					

Рисунок 23 – Удаление пула

1.3.9 Расширенный просмотр пула

При нажатии на соответствующую кнопку (рисунок 24, область 1) откроется вкладка расширенного просмотра пула.

zfs :				
ZFS 📿 Ū໘ ≒ Ū໘ имя	Размер	Свободно	Состояние	Управление 1
pool0	28.95TB	28.95TB	ONLINE	⊒ ⊕ ⊡ ⊵ :

Рисунок 24 – Кнопка расширенного просмотра пула

В данном окне можно наблюдать более подробный формат просмотра пула (рисунок 25).

zfs / pool0								
pool0	Размер:15.84ТВ Свободно:15.84ТВ							
		Создать DataSet/VVoL 📑	Обновление версии пула 🏠	Импорт/Экспорт пула 🦲	Настройки пула 🚦			
Имя	Использовано	Размер	Свободно	Тип	Статус:			
Пусто					ONLINE			

Рисунок 25 – Расширенный просмотр

1.3.10 Импорт и экспорт пула

При нажатии на соответствующий переключатель, выделенный рамкой (рисунок 26) есть возможность импортировать/экспортировать пул.

zfs :				
ZFS 📿 🖳 🛱 💭	Размер	Свободно	Состояние	Управление
pool0	15.84TB	15.84TB	ONLINE	≡ ⑦ 💿 🛛 ᠄

Рисунок 26 – Импорт/экспорт пула

1.3.11 Обновление версии пула

В случае обновления до новой версии ZFS есть возможность обновить версию пула нажатием на соответствующую кнопку (рисунок 27).

zfs: ZFS 🕞 📴 ≒ 🖳				
Имя	Размер	Свободно	Состояние	Управление
pool0	13.82TB	13.82TB	ONLINE	⊒ ⑦ ⊡ ⊠ ∶

Рисунок 27 – Обновление версии пула

При нажатии на соответствующую кнопку (рисунок 28) откроется окно создания dataset и vvol.

zfs :				
ZFS 📿 .়⊈ ≒₽	Размер	Свободно	Состояние	Управление
pool0	13.82TB	13.82TB	ONLINE	⊒ ⊙ ⊡ Ľ :

Рисунок 28 – Кнопка создания dataset/vvol

1.4 Datasets

ZFS datasets – это мощный и гибкий организационный инструмент, позволяющий легко и быстро структурировать данные, отслеживать размер с течением времени и делать резервные копии. Виртуальная файловая система внутри пула ZFS, позволяющая гибко управлять хранилищем, настройками и

снимками (snapshots). ZFS datasets похожи на подразделы в файловой системе, но с уникальными свойствами и управлением. Наборы данных используются для предоставления передачи данных по протоколам SMB и NFS.

Для создания набора данных необходимо нажать на соответствующую кнопку (рисунок 28) и в появившемся окне ввести его будущее название (рисунок 29).

Созд Data	ать DataSet/VVoL Set	×
	Data1	
	Формат ключа	
	Без шифрования	\checkmark

Рисунок 29 – Создание набора данных

После успешного создания набор данных будет отображаться в пуле (рисунок 30).

zfs :					
ZFS 🕞 🗊 🗢 🖳	Размер	Свободно	Состояние	Управление	
pool0	13.82TB	13.82TB	ONLINE	⊒ () ⊡ ⊠ :	
Имя	Использовано	Размер	Свободно	Тип	
pool0/data1	191.81KB			dataset	ī :

Рисунок 30 – Набор данных

У каждого набора данных есть свои уникальные свойства (рисунок 31).

zfs :				
ZFS 🕞 🗊 🗢 🖳	Размер	Свободно	Состояние	Управление
pool0	13.82TB	13.82TB	ONLINE	⊒ ⊕ ⊡ ⊠ :
Имя	Использовано	Размер	Свободно	Тип
pool0/data1	191.81KB	•	•	dataset 🗑 :

Рисунок 31 – Кнопка свойств набора данных

Откроется окно свойств набора данных (рисунок 32).

1.5 Виртуальные тома

ZFS так же может создавать дисковые устройства называемые томами (VVOL). Виртуальные тома могут быть полезны для запуска других форматов файловых систем поверх ZFS, таких как ISCSI и Fibre Channel. Для создания нужно ввести название будущего тома, размер диска, блока и указать формат диска – тонкий или толстый (рисунок 33).

Рисунок 33 – Создание виртуального тома

После успешного создания тома, он появится в пуле (рисунок 34).

zfs :					
	Размер	Свободно	Состояние	Управление	
pool0	13.82TB	13.82TB	ONLINE	⊒ ⑦ ⊡ ☑ :	
Имя	Использовано	Размер	Свободно	Тип	
pool0/data1	191.81KB	-	-	dataset	•
pool0/vvol01	111.89KB	5.00TB	0.00B	vvol/thick	Ē :

Рисунок 34 – Виртуальный том

У виртуальных томов так же, как и у наборов данных есть свои уникальные свойства (рисунок 35).

Рисунок 35 – Опции виртуального тома

Удаление виртуальных томов и наборов данных осуществляется нажатием на "корзину" (рисунок 36).

zfs :					
	Размер	Свободно	Состояние	Управление	
pool0	13.82TB	13.82TB	ONLINE	⊒ ⑦ ⊡ ⊠ :	
Имя	Использовано	Размер	Свободно	Тип	_
pool0/data1	191.81KB			dataset	t
pool0/vvol01	111.89КВ	5.00TB	0.00B	vvol/thick	t

Рисунок 36 – Удаление vvol/dataset

1.6 Fibre Channel

Перейдя на вкладку Fibre Channel, появится возможность наблюдать за доступными портами. (рисунок 37).

	Статус: 🥪 🌐 _{ги} 🕛 🕤
Son Space Простронство технологий	Fibre Channel 💾 21:00:00:0e:1e:2c:93:30 Статус: Выключено
	21:00:00:0e:1e:2c:93:31 Статус: Выключено
Hardware	
ZFS	
Fibre Channel	
ISCSI	
NFS	
Настройки	
Настройка сети	

Рисунок 37 – Fibre Channel

Для активации порта нужно кликнуть на него ЛКМ и переключить ползунок на активное состояние (рисунок 38).

Рисунок 38 – Активация порта

Далее необходимо создать группу для подключения сессий нажатием на кнопку "создания группы" (рисунок 39).

Рисунок 39 – Кнопка создания группы

В данном окне необходимо ввести название группы и создать группу (рисунок 40).

Tange Tensor		
	Создать группу Название	×
	Создать группу Название group1	×
	Создать группу Название group1 Создать	×
	Создать группу Название group1 Создать	
	Создать группу Название group1 Создать	

Рисунок 40 – Создание группы

Раскрыть созданную группу, в которой появятся доступные сессии для подключения (рисунок 41).

Fibre Channel Г 21:00:00:0e:1e:2c:93:30 Статус: Включено 21:00:00:0e:1e:2c:93:31 Статус: 93:31	Группы: [group1 Т					
Статус: Выключено	Диск 1: pool0/vvol01 Размер: 13.60ТВ • ssd O hdd Readonly: • Добавить	ø ^v x	Cecci 21:00 Cecci 21:00	ия 1: 0:00:0e:1e:f8:43:b0 • ия 3: 0:f4:e9:d4:58:20:d2 •	Сессия 2: 21:00:00:0e:1e:f8:43 Сессия 4: 21:00:f4:e9:d4:58:20	:b1 •

Рисунок 41 – Доступные сессии

Следующим шагом выбирается виртуальный том для подключения и тип дисков, после чего нужно нажать на "добавление". В правой части окна можно наблюдать доступные сессии для подключения. Нужно выбрать требуемые сессии для подключения к диску (рисунок 42).

Fibre Channel 21:00:00:0e:1e:2c:93:30 Статус: Включено 21:00:00:1e:2c:93:31	Группы: group1 Т					
Статус: выключено	Диск 1: pool0/vvol01 Размер: 13.60ТВ	×	Сессия 1: 21:00:00:0e:1e:f8:43:b0	٠	Сессия 2: 21:00:00:0e:1e:f8:43:b1	
	•ssd Ohdd Readonly: • Удалить		Сессия 3: 21:00:f4:e9:d4:58:20:d2	Ŧ	Сессия 4: 21:00:f4:e9:d4:58:20:d3	

Рисунок 42 – Подключение сессий

Аналогичные действия нужно проделать со всеми портами Fibre Channel.

1.7 ISCSI

Для создания подключения по протоколу ISCSI необходимо перейти на соответствующую вкладку на боковой панели (рисунок 43).

iscsi	Статус 💌	
Пусто		

Рисунок 43 – Протокол ISCSI

Активировать ползунок, переключая статус на активный. Выбрать сетевой интерфейс, по которому будет использоваться цель ISCSI (рисунок 44) и создать таргет.

Рисунок 44 – Создание цели ISCSI

Активный интерфейс с подключенным адресом будет выглядеть следующим образом (рисунок 45). В окне будут выводиться все доступные тома для подключения к цели.

iqn.2023-01.space.san:storage.tgt:740091
Диск 1: pool0/vvol01 Размер: 13.82TB O ssd • hdd readonly:• +

Рисунок 45 – Доступные диски для создания цели

Выбираем требуемый виртуальный том и подключаем.

Есть возможность указать доступ определенной сети, нажав на три точки в окне цели (рисунок 46).

iscsi	Статус 💽					
iqn.2023-	01.space.san:sto	rage.tgt:	740091	÷		
Диск 1: pool0/vvol01 Размер: 13.82TB O ssd • hdd readonly:• +						

Рисунок 46 – Опции ISCSI

Вписать адрес и нажать кнопку "добавить" (рисунок 47).

iqn.2 Дост	023-01.space.san:storage.tgt:740091 гуп		×
	Введите ір: 🕐	Список ір:	
	192.168.1.10	ALL	
	Добавить		

Рисунок 47 – Доступ к диску ISCSI

1.8 NFS

Для создания ресурса NFS следует перейти на соответствующую вкладку на боковой панели (рисунок 48).

Рисунок 48 – Ресурс NFS

При нажатии на кнопку "добавления NFS" появится окно с указанием свойств подключения. Необходимо ввести адрес подсети (и нажать кнопку добавления адреса), которой будет открыт доступ к NFS, выбрать набор данных и нажать кнопку "добавить" (рисунок 49).

Добавление NFS			×
Введите ІР/сеть:			
192.168.0.0/24 x			
ĺip			
Выбрать DataSet:		Выбрать squash:	
pool0/data1	\checkmark	all_squash	\checkmark
Только для чтение: 🛛 🌘	•		
High-Performance:			
	Доб	авить	

Рисунок 49 – Создание NFS

На вкладке появится окно подключения NFS (рисунок 50).

Рисунок 50 – Окно подключения NFS

Есть возможность скопировать команду для подключения NFS в OC Linux (рисунок 51).

NFS 🛨	
Название DataSet: pool0/data1 Путь: /zfs/pool0/data1 Лоступ: 192,168,0,0/24	
]

Рисунок 51 – Команда подключения NFS

1.9 SMB

Для подключения по протоколу SMB необходимо в опциях файлового ресурса подключить соответствующую опцию (рисунок 52).

Рисунок 52 – Протокол SMB

1.10 Настройки

При нажатии "настройки" откроется окно, в котором можно наблюдать сведения о версии веб-интерфейса, версии "zfs", имени системы (рисунок 53).

Рисунок 53 – Окно настроек

Следующей вкладкой в настройках можно указать NTP и настроить уведомления (рисунок 54).

Рисунок 54 – NTP и уведомления

В последней вкладке настроек можно поменять язык системы, часовой пояс и изменить пароль доступа к веб-интерфейсу (рисунок 55).

$\overline{\mathbf{N}}$		
	user :	
	Русский	\downarrow
	Часовой пояс	
ĕ	Europe/Moscow	\downarrow
	Введите пароль	
	Подтвердить	

Рисунок 55 – Пользовательские настройки

1.11 Настройка сети

Для настройки сетевых интерфейсов следует перейти на соответствующую вкладку на боковой панели (рисунок 56).

(+) Имя	Устройство	IP-адрес	Скорость	Дуплекс	Метод	Состояние	Управление	Редактировать	Удалить
usb0	usb0	169.254.3.1/24	Unknown!	Half	auto	activated		ß	Ē
eno2	eno2	-	-	-	auto	inactive		ľ	Ē
eno1	eno1	10.144.54.53/24	1000Mb/s	Full	auto	activated		ľ	Ē

Рисунок 56 – Настройка сети

При нажатии на имя сетевого интерфейса появится возможность настроить параметры для конкретного сетевого интерфейса (рисунок 57).

Рисунок 57 – Настройка сетевого интерфейса

1.12 Репликация

Репликация ZFS основана на создании мгновенных снимков, которые можно создавать в любое время и в любом количестве. Постоянно создавая, перемещая и восстанавливая снимки, можно обеспечить синхронизацию между одной или несколькими машинами. ZFS предоставляет встроенную функцию сериализации, которая может отправлять потоковое представление данных на стандартный вывод. Помимо хранения данных одного пула в другом локальном пуле, можно также отправлять данные по сети в другую систему.

Для работы с репликацией следует нажать на соответствующую кнопку (рисунок 58).

zſs: ZFS 😪 🖳 ≒ Ω,				
Имя	Размер	Свободно	Состояние	Управление
pool0	15.84TB	15.84TB	ONLINE	⊒ ⑦ ⊡ ⊠ :

Рисунок 58 – Хосты для репликации

В появившемся окне вводим адрес удаленного хоста для репликации, а

также логин и пароль для доступа к серверу (рисунок 59).

zfs / hosts				
10.144.54.82		Адрес сервера	SSH	Удалить
root		Пусто		
Пароль				
•••••	Ø			
	Добавить Хост)		

Рисунок 59 – Добавление хоста для репликации

После успешного добавления сервер появится в списке для репликаций (рисунок 60).

zfs / hosts			
Адрес сервера	Адрес сервера	SSH	Удалить
	10.144.54.82	/root/.ssh/804484859	Ô
ИМЯ ПОЛЬЗОВАТЕЛЯ	J		
Пароль)		
8	J		
Добавить Хост	J		

Рисунок 60 – Доступные хосты для репликаций

Затем следует перейти на вкладку ZFS и открыть настройки нужного набора данных для репликации (рисунок 31). В окне набора данных следует перейти на вкладку репликаций и добавить ранее подключенный хост (рисунок 61).

test/	data									×
Репл	икации									
6	Частота	Устройства	Имя	Пулл	Имя в пуле	Хост	Удалить	Редактировать	Логи	
	10s	mbuffer	test/data	pool0	data2	10.144.54.82	⊕			
₹										

Рисунок 61 – Окно репликаций

Возможность наблюдать за процессом репликации данных в разделе логов отображена на рисунке 62.

Логи pool0/	bigdata								
Частота	Устройства	Имя	Пулл	Время вь	полнения Статус	Информация	Тип	Хост	Временная метка
1	mbuffer	pool0/bigdata	pool0	0.941	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:12:16.691031
1	mbuffer	pool0/bigdata	pool0	0.946	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:12:14.559389
1	mbuffer	pool0/bigdata	pool0	0.942	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:12:12.426294
1	mbuffer	pool0/bigdata	pool0	0.92	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:12:10.293350
1	mbuffer	pool0/bigdata	pool0	0.935	Успешно	mbi	uffer incr	10.144.54.82	2025-04-15T15:12:08.187521
1	mbuffer	pool0/bigdata	pool0	0.946	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:12:06.053528
1	mbuffer	pool0/bigdata	pool0	0.927	Успешно	mbi	uffer incr	10.144.54.82	2025-04-15T15:12:03.914191
1	mbuffer	pool0/bigdata	pool0	0.94	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:12:01.797133
1	mbuffer	pool0/bigdata	pool0	0.929	Успешно	mbi	uffer incr	10.144.54.82	2025-04-15T15:11:59.666912
1	mbuffer	pool0/bigdata	pool0	0.945	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:11:57.552446
1	mbuffer	pool0/bigdata	pool0	0.919	Успешно	mbi	uffer incr	10.144.54.82	2025-04-15T15:11:55.416912
1	mbuffer	pool0/bigdata	pool0	0.933	Успешно	mbi	uffer incr	10.144.54.82	2025-04-15T15:11:53.309339
1	mbuffer	pool0/bigdata	pool0	0.917	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:11:51.187613
1	mbuffer	pool0/bigdata	pool0	0.934	Успешно	mbi	uffer incr	10.144.54.82	2025-04-15T15:11:49.071304
1	mbuffer	pool0/bigdata	pool0	0.935	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:11:46.947949
1	mbuffer	pool0/bigdata	pool0	0.932	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:11:44.817037
1	mbuffer	pool0/bigdata	pool0	0.925	Успешно	mbi	uffer incr	10.144.54.82	2025-04-15T15:11:42.698032
1	mbuffer	pool0/bigdata	pool0	0.921	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:11:40.585752
1	mbuffer	pool0/bigdata	pool0	0.956	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:11:38.476954
1	mbuffer	pool0/bigdata	pool0	0.982	Успешно	mbu	uffer incr	10.144.54.82	2025-04-15T15:11:36.325478

Рисунок 62 – Логи репликации

1.13 Мгновенные снимки

Снимок (snapshot) – моментальная копия файловой системы или тома, не требующая дополнительного места в пуле ZFS. Дисковое пространство требуется только для записи измененных блоков: записываются только различия между текущим набором данных и предыдущей его версией.

Типичный пример использования снимка – быстрое получение резервной копии файловой системы перед выполнением "рискованных действий" вроде установки нового софта или обновления системы.

Для создания снимка необходимо открыть параметры набора данных или виртуального тома (рисунок 63).

	Статус: 🥩 🌐 ru 🕛 🖒]
Space Pecification	zfs: ZFS ♀ ₽₽ ♀ ₽₽ Имя	Размер	Свободно	Состояние	Управление	
	pool0	19.74TB	19.74TB	ONLINE	⊒ ⑦ ⊡ ⊠ :	
Hardware	Имя	Использовано	Размер	Свободно	Тип	-
ZFS	pool0/data1 pool0/vvol1	204.75KB 119.44KB	- 19.74TB	- 0.00B	dataset vvol/thin	
Fibre Channel						-
ISCSI						

Рисунок 63 – Открытие окна снимков

Затем перейти на вкладку снимков, ввести имя будущего снимка и при необходимости указать фиксацию (рисунок 64).

pool0/data1							×
Снапшот							
ммя 😥	Заморожено	Память	Дата	Вернуться к состоянию	Удалить		
Пусто						snap1	
						Заморозить 🛑	

Рисунок 64 – Окно снимков

После успешного создания снимок будет выведен в списке (рисунок 65). В этом же окне есть возможность вернуться к состоянию снимка.

Рисунок 65 – Список снимков

1.14 Замена вышедшего из строя диска

В случае, если какой-то диск выходит из строя, то он будет отображаться красным (рисунок 66).

	Crarye 🧶 🖶 nu 🕐 🖸]
Space Indertpercite	Контроллеры Количество контролеров: 2 НВА 9500-81 НВА 9500-81 40°С 41°С		
Hardware	Информация о дисках	(Обновить
ZFS Fibre Channel	Кол во дисков: 13 Воето места: 19.21ТВ Воето места: 19.21ТВ/13 дисков Свободного места: 0.08/10 дисков	Boot Disk: Samsung SSD 970 E Серийный номер: Размер: S4EUNX0RA32551R 232.89GB	EVO Plus 250GB Температура: 29°C
ISCSI	В пуле Полько используемые слоты		
NFS Настройки	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	19 20 21 22	23 24
Настройка сети	Диски NVME		

Рисунок 66 – Выход диска из строя

В данном случае видно, что диск в 7 слоте стал неисправен и его следует заменить. Необходимо достать неисправный диск и вставить на его место новый. После физической замены диска перейти на вкладку ZFS и также посмотреть, что есть неисправности в работе пула (рисунок 67).

Далее необходимо открыть настройки пула и перейти на вкладку замены диска (рисунок 15).

	Статус: 🌖 🌐 _{ги} (신)]
Social	zfs :					
пространство	ZFS 📿 민 🗢 🖳	Размер	Свободно	Состояние	Управление	
	pool0	15.84TB	15.84TB	ONLINE	≡ ⑦ • 2 :	
Hardware	One or more devices are faulted in respons	e to persistent errors. Sufficient replicas exis	st for the pool to continue functioning in a de	graded state.		
755	Имя	Использовано	Размер	Свободно	Tun	æ :
213		127.9780	13.0010	0.000	1100 till	
Fibre Channel						
ISCSI						
NFS						
Настройки						
Настройка сети						

Рисунок 67 – Ошибки пула

При переходе на окно замены диска, нужно переместить свободный диск из левой области на неисправный в пуле (рисунок 68).

zfs / pool0 / settings									
Заме	Замена дисков								
ණ	Заменить диски		Отменить						
Ð	Слот: 9			Кол-во дисков					
e L	Размер: 1.75ТВ	^	raidz2-0	12					
0		-	1: SSD: 1.75TB						
		-	2: SSD: 1.75TB						
Û		\vdash	3: SSD: 1.75TB						
		F	4: SSD: 1.75TB						
			5: SSD: 1.75TB						
			6: SSD: 1.75TB						
			7: SSD: 0.00B						
			8: SSD: 1.75TB						
			9: SSD: 1.75TB						
			10: SSD: 1.75TB						
		L	11: SSD: 1.75TB						

Рисунок 68 – Замена вышедшего из строя диска

Переместить новый диск на замену неисправного и нажать кнопку "заменить диск" (рисунок 69).

zfs / pool0 / settings					
Замена дисков					
В Заменить диски				Отменить	
8			Кол-во диско)B	
	^	raidz2-0	12		4
	H	1: SSD: 1.75TB			
	-	2: SSD: 1.75TB			
	-	3: SSD: 1.75TB			
		4: SSD: 1.75TB			
		5: SSD: 1.75TB			
		6: SSD: 1.75TB			
		9: SSD: 1.75TB		← 7: SSD: 0.00B	
		8: SSD: 1.75TB			
		9: SSD: 1.75TB			
	-	10: SSD: 1.75TB			
		11: SSD: 1.75TB			

Рисунок 69 – Подтверждение замены диска

После выполненных действий диск в пуле будет заменен на новый (рисунок 70).

Рисунок 70 – Новый диск в пуле

1.15 Шифрование

Шифрование ZFS – это встроенный механизм защиты данных, который обеспечивает "прозрачное" шифрование файловых систем или томов на уровне блоков. Данные автоматически шифруются при записи и расшифровываются при чтении, что предотвращает несанкционированный доступ к информации даже при физическом изъятии дисков.

Для создания шифрованного набора данных следует выбрать требуемый формат ключа для шифрования. В веб-интерфейсе реализован функционал шифрования раздела с возможностью выгрузить ключ на съемный носитель или в систему, с которой осуществлён вход на вебинтерфейс. Так же можно зашифровать по парольной фразе (рисунок 71).

Созд Datas	ать DataSet/VVoL Set	×
	bigdata	
	Формат ключа	
	Без шифрования	\uparrow
	Без шифрования	^
	Ключ на съемном носителе	
		~

Рисунок 71 – Выбор способа шифрования

Перед тем как вставить съемный носитель в СХД настоятельно рекомендуется отформатировать его в файловую систему FAT32, с помощью стандартной процедуры форматирования носителя в ОС Windows (рисунок 72).

Форматирование "ESXI-7_0U3N (F:)"	×					
Емкость:						
28,4 ГБ	\sim					
Файловая система:						
FAT32 (по умолчанию)	\sim					
Размер единицы распределения:						
16 КБ	\sim					
Восстановить параметры по умолчанию						
ESXI-7_0U3N						
– Способы форматирования: ⊡Быстрое (очистка оглавления)						
Начать Закрыть						

Рисунок 72 – Форматирование съемного носителя

Созданный набор данных отобразится в списке "активных" с открытым замком, означающим загруженный ключ шифрования в системе (рисунок 73).

zfs :				
ZFS 📿 :,⊑ ≒ :,⊑ имя	Размер	Свободно	Состояние	Управление
pool0	15.84TB	15.84TB	ONLINE	
Имя pool0/bigdata	Использовано 365.63КВ	Размер -	Свободно	Тип dataset 🕞 🕅 🗄

Рисунок 73 – Расшифрованный набор данных

Для того, чтобы набор данных стал недоступен для просмотра и редактирования необходимо достать съемный носитель из СХД и экспортировать пул или повторным нажатием на замок сделать набор данных недоступным. После экспорта пула информация он нем будет недоступна (рисунок 74).

zfs :						
	Размер	Свободно	Состояние	Управление		
pool0	0.00B	0.00B	DISCONNECTED			
Имя	Использовано	Размер	Свободно	Тип		
0						

Рисунок 74 – Экспортированный пул

Импортируя пул в систему можно будет наблюдать за ранее созданным набором данных с соответствующим замком шифрования (рисунок 75). Применение замка шифрования означает, что набор данных недоступен для просмотра и редактирования, пока не будет загружен ключ шифрования или не введена парольная фраза.

zfs :				
ZFS 🕞 🗊 🛱 💭	Размер	Свободно	Состояние	Управление
pool0	15.84TB	15.84TB	ONLINE	⊒ ⑦ ● 2 :
Имя pool0/bigdata	Использовано 365.63КВ	Размер	Свободно	Тип dataset 🔒 🗊 🚦

Рисунок 75 – Зашифрованный набор данных

При нажатии на "замок" появится окно разблокировки набора данных по ранее созданному ключу (рисунок 76).

Рисунок 76 – Разблокировка набора данных

В следующем окне нужно выбрать расположение ключа (Рисунок 77).

Рисунок 77 – Выбор расположения ключа

Затем в зависимости расположения ключа необходимо выбрать ключ, которым был зашифрован набор данных.

После успешной разблокировки набор данных станет доступен для просмотра и редактирования (рисунок 78).

zfs :					
ZFS 🕞	Размер	Свободно	Состояние	Управление	
pool0	15.84TB	15.84TB	ONLINE	⊒ ⑦ ⊡ ∅	:
Имя	Использовано	Размер	Свободно	Тип	
pool0/bigdata	365.63KB	•	•	dataset	'6 W :

Рисунок 78 – Разблокированный набор данных

В случае, если был зашифрован виртуальный том, который был подключен по Fibre Channel или iSCSI, то необходимо сначала разблокировать vvol как на рисунке 75. А затем синхронизировать конфигурационный файл (Рисунок 79).

Рисунок 79 – Синхронизация конфигурационного файла Это нужно для автоматического восстановления подключений без необходимости повторного подключения виртуальных томов и инициаторов.